
fe^j^'i£«

Computer ScieTCe Department

TECHNICAL REPORT

cH
w

Deterministic Coin Tossing With Applications to

Optimal Parallel List Ranking

Uzi Vishkint

(Tel Aviv University)

Richard Colet

(New York University)

Technical Report #175
Ultracomputer Note #89

September, 1985

>

e

Q

(0

3

o

NEW YORK UNIVERSITY

Department of Computer Science

Courant Institute of Mathematical Sciences

251 MERCER STREET, NEW YORK, N.Y. 10012



I*

•

w^*i»*« i»- « «i i» • • «^
aUHK^HH



Deterministic Coin Tossing With Applications to

Optimal Parallel List Ranking

by

Uzi Vishkint

(Tel Aviv University)

Richard Cole*
(New York University)

Technical Report #175
Ultracomputer Note #89

September, 1985

New York University

Dept. of Computer Science

Courant Institute of Mathematical Sciences

251 Mercer Street

New York, New York 10012

tThis research was supported by NSF grants NSF-DCR-8318874, NSF-DCR-8413359 NSF-
DCR-84-01633, ONR grant N0014-85-K-0046 and by the AppHed Mathematical Sciences
subprogram of the office of Energy Research, U.S. Department of Energy under contract
number DE-AC02-76ER03077. Present address for Uzi Vishkin: Department of Computer
Science, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978 ISRAEL.
tThis research was partially supported by NSF Grant DCR-84-01633 and by a^ IBM faculty
development award.



": ^.r.r^i
-

I 'i.

ijcioi:



ABSTRACT

The following problem is considered: given a linked list of

length n , compute the distance from each element of the hnked

list to the end of the hst. The problem has two standard

deterministic algorithms: a linear time serial algorithm, and an

0(log n) time parallel algorithm using n processors. We
present new deterministic parallel algorithms for the problem.

Our strongest results are:

1. 0(log n log(*)/z) time using n/(log nlog^^^/i) processors, for

any fixed positive integer k, where log^*) is the ^-th iterate of

the log function. This algorithm achieves optimal speed-up.

2. 0(log n log'n) time using n/log n processors. Since log*n

grows extremely slowly as a fimction of n this algorithm

achieves optimal speed-up for all practical purposes.

3. 0(log n) time using nlog'^^^n/log n processors, for any fixed

positive integer k.

The algorithms apply a novel "random-like" deterministic

technique. This technique provides for a fast and efficient

breaking of a symmetric situation in parallel.

1. Introduction

The model of parallel computation used in this paper is the exclusive-

read exclusive-write (EREW) parallel random access machine (PRAM). A
PRAM employs p synchronous processors all having access to a common
memory. An EREW PRAM does not allow simultaneous access by more
than one processor to the same memory location for read or write purposes.

See [Vi-83a] for a survey of results concerning PRAMs.

Let Seq{n) be the fastest known worst-case running time of a sequential

algorithm, where n is the length of the input for the problem being

considered. Obviously, the best upper bound on the parallel time achievable

using p processors, without improving the sequential result, is of the form
0{Seq{n)/p). A parallel algorithm that achieves this nmning time is said to

have optimal speed-up or more simply to be optimal.

We present a new deterministic coin tossing technique for devising

parallel algorithms. The technique uses the binary representation of names
(numbers) for breaking a symmetric situation in a "random-like" fashion.

Let m be the size of the memory of our computer. Our technique

performs well when each variable in the underlying model of computation is

represented by a few bits (say 0{\og m) bits). Interestingly, the technique

performs badly when each variable is represented by many bits (say f{m)
bits, where/ is the inverse of log*). Representing each variable by C>(log m)
bits is in line with typical definitions of RAMs (see [AHU-74]). The role of

PRAMs is to extend the RAM model to express parallelism. This extension



should have no effect on the number of values that each variable may
assume. A variant of PRAMs (called PRAM-INFINITY) that allows each

variable to assume infinitely many values has been proposed recently. The
PRAM-INFINITY also allows infinitely large shared memory. This variant

(or closely related ones) was used to prove lower bounds for various

interesting problems; the proofs apply mathematically appealing "Ramsey-

like" theorems (see [FMRW-85], [IM-85], [MW-85]).

It appears that in the transition from PRAM to PRAM-INFINTrY we
lose the coin tossing technique. For the technique depends crucially on the

fact that each variable is represented by few bits (say 0(log m) bits), while in

the PRAM-INFINITY model this constraint does not exist; in fact, there is

no restriction on the number of bits representing a variable. This is

analogous to the loss of bucket sort when we adopt the decision tree model.

(See [AHU-74] for both an n(7ilog n) time lower bound for sorting n

elements in a decision tree model and an 0{n) time bucket sort algorithm).

We show how to apply our coin tossing technique to the list-ranking

problem defined below.

Input: A linked list of length n. It is given in an array of length n, not

necessarily in the order of the linked list. Each of the n elements (except the

last element in the linked list) has the array index of its successor in the

linked list. nno -

The problem: For each element, compute the number of elements following

it in the linked list.

The list ranking problem is encountered often in the design of parallel

algorithms. For instance, the fundamental "Euler tour technique" for

computing various tree functions (see [TV-83] and [Vi-85]) has the same
efficiency as the new algorithm presented here.

The problem has a trivial linear time serial algorithm and a simple

deterministic parallel algorithm. This parallel algorithm runs in time
C>(log n) using n processors. However, Wyllie [W-79] conjectured that fl(n)

processors are required in order to get C>(log n) time. If true, this would
imply, in particular, that there is no optimal speed-up parallel algorithm for

/i/log n processors. [KRS-85] recently presented an optimal speed-up
algorithm for this problem that nms in O(n') time using /i^~* processors, for

fixed 6, 1>6>0. [Vi-84b] proposed to use randomized parallel algorithms

for this problem. A randomized parallel algorithm which nms in 0(n/p)
time using p < /i/(log n log'n) processors on an EREW PRAM was given.

The probability that this will indeed be the running time converges rapidly to

one as n grows. In particular, this optimal speed-up algorithm runs in

"about" C>(log n) time using "about" n/log n processors.

In this paper we present new deterministic parallel algorithms. Our
strongest results are:

Page 3



1. C>(log n log(*)/i) time using n/(log n\og^^'>n) processors, for any fixed

positive integer k, where log^*^ is the ^-th iterate of the log function. This

algorithm achieves optimal speed-up.

2. C>(log n \og'n) time using n/\og n processors. Recall that log'n grows

extremely slowly and can be viewed as a constant for all practical purposes.

(For instance, log*2^^^^^ = 5. See the function G in [AHU-IA], p. 133).

Therefore, we can justifiably say that our algorithm achieves optimal speed-

up for all practical purposes.

3. 0{\ogn) time using n\og^^^n/\ogn processors, for any fixed positive

integer k, thereby showing that WylUe's conjecture is incorrect.

The next section presents the new deterministic coin tossing technique

for breaking a symmetric situation. Among other things. Section 3 reviews

an optimal speed-up deterministic parallel algorithm that uses balanced trees.

The algorithm is used later for two purposes: (1) as a subroutine, and (2) to

explain the new list ranking algorithm. The new algorithm essentially grafts

the new technique onto the framework of the balanced tree algorithm. In

section 4 we describe the basic version of our algorithm that runs in time

OQog n loglog n) using n log*n/(log n loglog n) processors. This algorithm

achieves close to optimal speed-up; it will be quite adequate for all practical

purposes. In section 5 we describe the algorithms that achieve optimal

speed-up and our other results.

2. The deterministic coin tossing techpique

We illustrate the deterministic coin tossing technique by using it to break
the symmetric situation that arises in the following problem.
Input: A connected directed graph G{V,E). The in-degree of each vertex is

exactly one. The out-degree of each vertex is exactly one. Such a graph is

called a ring since it forms a directed circuit. Let n = Ivj.

We define a subset t/ of V to be an r- ruling set of G if:

(1) No two vertices of U are adjacent.

(2) For each vertex v in V there is a directed path from v to some
vertex in U whose edge length is at most r.

The r-ruling set problem: Find an r-ruling set of V.

In order to demonstrate our basic technique we give an 0{1) time
algorithm using n processors for the [log «] -ruling set problem. The
algorithm is given for the EREW PRAM.
Later, we present a recursive application of the technique. It leads to an
0{k) time algorithm using n processors for the [log^^^^l -ruling set problem.
In particular, it provides an C>(log*/i) time algorithm using n processors for
the 2-ruling set problem.

Page 4



Assumptions about the input representation: The vertices are given in an

array of length n. The entries of the array are numbered from to n — 1. The
numbers are represented as binary strings of length [log n\ . We refer to each

binary symbol (bit) of this representation by a number between and

[log n] — 1. The rightmost (least significant) bit is called bit number and

the leftmost bit is called bit number [log n] — 1. Each vertex has a pointer to

the next vertex in the ring (representing its outgoing edge). For simplicity

we assume that log n is an integer-^.

Here is a verbal description of an algorithm for the log n-ruling set

problem. The algorithm is given later. Processor /, < i < az
—

1, is assigned

to entry / of the input array (for simplicity, entry i is called vertex i). It will

attach the number i to vertex /. So, the present "serial" number of vertex i,

denoted SERIALqQ), is z. Next, we attach to vertex / a new serial number,
denoted SERIALi(i), as follows. Let /j be the vertex preceding i and let Z2 be

the vertex following /. (That is (i\,i) and {(,(2) ^® i^i E). Let j be "the

nimiber of the rightmost bit in which i and 12 differ". Processor / assigns j to

SERIAL i(i).

Example. Let i be ...010101 and 12 be ...111101. The number of the

rightmost bit in which i and (2 differ is 3 (recall the rightmost bit has number
0). Therefore, SERIAL^{i) is 3.

Remark (Due to B. Schieber). / can be computed by a constant nimiber of

standard operations, as follows. Without loss of generality suppose i ^ 12

(otherwise interchange the two numbers). Set h = i — i2, and k = h — 1. (So

h has a 1 for bit number j , and a for bits of lesser significance, while k has
a for bit number j, and a 1 for bits of lesser significance; also, h and k
agree on the bits of higher significance.) Compute / = hOk, where O is the

exclusive-or operation. We observe / is the unary representation of j+1. So
it just remains to convert this value from unary to binary, and then to

subtract one.

Next, we show how to use the information in vector SERIALi in order to find

a log n -ruling set.

Fact 1: For all i, SERIALi{i) is a number between and log n —1 and needs
only [loglog n] bits for its representation. For simplicity we will assume that

loglog « is an integer.

Fact 2: Suppose SERIAL i(i) is a local minimum. (That is,

SERIALi{i) < SERIALi(ii) and SERIALi(i) < SERIAL^{i2), where i^ is the
vertex preceding /, and ii is the vertex following /.) Then:

'The base of all logarithms in the paper is 2.

Page 5



(a) At least one of SERIALi(i), SERIALi(i2), and SERIAL^ of the

log n — 2 vertices immediately further beyond 12 is a local maximum.

(b) Let k be such a local maximum that is closest to i. Then, at least

one of SERIALiik) and SERIAL^ of the log n -1 vertices immediately

further beyond it is a local minimum.

(c) The length of the shortest path from any vertex in G to a (vertex

which provides a) local extremum (minimum or maximum), with

respect to SERIALi, is at most log n — 1.

Observe that several local minima (or maxima) may form a "chain" of

successive vertices in G. Requirement (1), in the definition of an r-ruling

set, does not allow us to include all these local minima in the set of selected

vertices. Our algorithm exploits the alternation property (defined below) of

vector SERIALi to overcome this problem.

The alternation property: Let / be a vertex and j be its successor. If bit

nimiber SERIALi{i) of SERIALQ{i) is (resp. 1), then this bit is 1 (resp. 0) in

SERIALoiJ).

Suppose that /i,i2 * " " is a chain in G such that SERIAL i{i) is a local

minimum (resp. maximum) for every / in the chain. Then:

Fact 3: For all vertices in the chain SERIAL-^ is the same (i.e.,

SERIALi(ii) = SERIALiii-2) = • • • )• (By definition of local minimum).

Below, we consider bit number SERIALi(ii) of S^RIALq for all vertices in the

chain. Let /;,//+ 1 be two adjacent vertices in the chain.

Fact 4: Bit number SERJALi(ii) of SERIALqUi) is not equal to bit number
SERlALi{i'^ of SERIALQ{ii+{). (This is readily implied by the alternation

property).

We select all vertices i that are local minima and satisfy one of the following
two conditions:

(1) Neither of /'s neighbors (the vertices adjacent to i) is a local

minimum.

(2) Bit number SERIALi{i) is 1.

We say an unselected vertex is available if neither of its neighbors was
selected and it is a local maximum. We select all available vertices / that

satisfy one of the following two properties.

(1) Neither of I's neighbors is available.

(2) Bit number SERIALi(i) is 1.

The selected vertices form a log /i-ruling set. Requirement (1) is satisfied

since we never select two adjacent vertices. Requirement (2) is satisfied by
Fact 2(c) and since every local extremum is either selected or is a neighbor of
a vertex that was selected.

Page 6



Less informally we write the algorithm as follows. (Later, we will refer

to this as the basic step.)

for Processor i, ^ / ^ n— 1, pardo

SERIALoii) := /

SERIALi{i) := "the minimal bit m which SERIALoii) differs from

SERIALq of the following vertex"

if SERIALiQ) is a local minimvim with respect to the two neighbors of z

then if either of the following is satisfied:

(1) neither of the vertices adjacent to i is a local minimum
(2) bit number SERIAL^ii) of SERIALoiO is 1

then select i

if neither / nor any of its neighbors were selected and if SERIALi(i) is

a local maximum with respect to the two neighbors of i

then (** i is available, and **) if either of the following is satisfied:

(1) neither of the vertices adjacent to i is available

(2) bit number SERIALi{i) of SERIALQ(i) is 1

then select i

Below, we show how to apply the basic step repeatedly in order to find a 2-

ruling set. .

_

The k-th application of the basic step. ,

'

In order to prepare the input for the )t-th application of the basic step,

we "delete" from G the vertices that were selected in the previous k—l
applications, their neighbors, and the edges incident to any vertex being

deleted.

The input for the ^-th application of the basic step is the remaining graph
and vector SERIALj^^i. SERIAL^-i will play the role played above by SERIALq
and a new vector SERIAL^, will play the role of SERIAL^. The degree of each

vertex in the input graph is at most 2 (if the directions of the edges are

ignored). It will be very simple to extend the basic step to handle vertices

whose degree is < 1. Vertices whose degree is 2 are treated as in the basic

step (unless they have a neighbor whose degree is 1) . The k-th application of

the basic step wiU be as follows. (For an explanation see Fact 5 below.)

for processor z, < / < n— 1, pardo
if vertex z or one of its neighbors have been selected

in a previous application of the basic step

then "delete" vertex z and the edges incident to it

for processor /, < z < n— 1, such that z is in the remaining graph pardo
case 1 deg(i) = 2

then compute SERIALj^{i)

if the degree of each of z's two neighbors is 2

then apply the basic step to z

case 2 deg(i) =

Page 7



then select /

case 3 deg(i) = 1

then if either of the following is satisfied

(1) the degree of z's neighbor is 2

(2) z's neighbor is its successor

then select i

The following fact helps to clarify the operation of the k-th application of the

basic step.

Fact 5: Let ij be adjacent in the input graph for the ^-th apphcation. Then:

SERIALi,-i{i) i^ SERIALk-iij). (For k=\ this inequality clearly holds.

We show that it also holds \i k > 1. If they were equal each of them
had to be a local maximum or local minimum at the (^— l)-st

application. The selection of the ruling set implies that each local

maximum or local minimum is either selected or has a neighbor being

selected. Therefore, it must have been deleted and cannot be included

in this input graph).

Fact 6: It is easy to deduce that the output graph consists of simple paths

each of length at most loglog • • • log n — 1 (counting edges) where the

sequence includes k "log"s. (Again, we assmne for simplicity that each

apphcation of a sequence of logs to n produces only integers)

.

We finish this description with three obvious conclusions.

(1) After a total of log'n apphcations we delete all vertices in the

graph.

(2) The vertices that were selected form a 2-ruling set.

(3) The cardinahty of a 2-ruUng set (in a ring) is at least n/3.

If our original input is a directed path of n vertices, rather than a ring, we
obtain a 2-ruling set by applying the basic step \og*n times, as above. To
obtain a log'^^^n-ruling set we apply the basic step k times.

General remarks.

1. Readers famihar with randomized algorithms may be tempted to

solve these problems using randomization. We already mentioned that

[Vi-84b] did so for (the related) hst ranking problem. Our
deterministic technique was inspired by such a randomized approach.

2. The [log /i]-ruhng set algorithm is valid even for models of

distributed computation that allow only local communication and do
not have a shared memory like a PRAM. We do not elaborate on this.

Page 8



3. Balanced tree algorithms

3.1. Preliminaries

Theorem (Brent). Any synchronous parallel algorithm taking time t that

consists of a total of x elementary operations can be implemented by p
processors within a time of \x/p^ + t.

Proof of Brent's theorem. Let Xi denote the number of operations performed

by the algorithm in time i ( 2 ^/ = ^)- We use the p processors to

1

"simulate" the algorithm. Since all the operations at time / can be executed

simultaneously, they can be computed by the/? processors in [-^j/pl units of

time. Thus, the whole algorithm can be implemented by p processors in time

i.\xi/p^^i,{x,/p + V)^ \x/p^ + t .D

1 1

Remark. The proof of Brent's theorem poses two implementation problems.

The first is to evaluate Xi at the beginning of time / in the algorithm. The
second is to assign the processors to their jobs.

Recall the following standard deterministic parallel algorithm for the list-

ranking problem (defined in the Introduction). Say that we have n

processors. Assign a processor to each of the n elements. Denote the pointer

of element i of the input array by D{i) and initialize R{i):— 1, l</<n. We
set D{t) := "end of list" (where t is the last element in the linked list),

D("end of Ust") := "end of list" and R ("end of list") := 0.

Iterate |log n\ times:

for processor i, l<i<n, pardo (perform in parallel)

R{i) := R{i) + R{D{i));D{i) := D{D{i)) (To be called the short-cut

operation, performed by / at D{i)). (See Fig. 2.)

Note that n(nlog n) short-cuts are made by this algorithm. It runs in time

0((/zlog n)/p -I- log n) using p processors on an EREW PRAM and solves

the list ranking problem, by placing the results in the vector /?.

Implementation Remark 1. In order to derive this running time from Brent's

theorem n has to be broadcast to all /? processors. This takes an additional

C>(logp) time.

Implementation Remark 2. As presented the algorithm is not EREW since

there are concurrent reads at "end of list". This can be avoided by instructing

every processor i to quit when D(z) = "end of list".

3.2. Balanced binary tree parallel algorithms.

One simple pattern of optimal speed-up deterministic parallel algorithms

uses the balanced binary tree. This pattern was used, among many others, by
[W-79], [CLC-81] and [Vi-84a]. Let us first demonstrate this pattern on the

Page 9



problems of computing sums and prefix simis.

Input: An array of n numbers A(l)^(2),...^(n). Assume, without loss of

generality, that log2 n is an integer.

Problem: Compute their sum.

Algorithm: "Plant" a balanced binary tree with n leaves on the array. The
nodes of the tree at level h are denoted [hj], l<y<2'°g''~''. See Fig. 3.

Leaf [0 J] corresponds to A(J). Associate a number B[hJ] with node [hJ] of

the tree.

Initialization: for all l<y<n pardo B[0,j] := A(J).

for h := 1 to log n do

for all l<y<2i°e''-'' pardo5[;2j] := B[h-l,2j-l] + B[h-l,2j'].

B[\og n,l] holds the desired sum.

Think first about an n processor implementation of this summation
algorithm. It runs in 0{\ogn) time. Then apply the proof of Brent's Theorem
to get an alternate implementation that uses only n/log n processors and runs

in 0(log n) time. This summation algorithm can be extended to solve the

following prefix sum problem.

Input: Same as for the summation problem.
i

Problem: Compute ]^ A(J) for all l<z<n.
1

Algorithm: Perform the summation algorithm given above, thereby obtaining

all the B values. An additional "down-sweep" of the tree (from the root to

the leaves), which roughly amounts to reversing the operation of the

summation algorithm, will complete the job.

Associate another number C[hJ] with each node [hJ].

Initialization: C[log/i,l] := 0.

for /i := log n— 1 downto do
for all l<y<2^og"-'' pardo

if 7 is odd
thenC[;ij] := C[h + l,(j + l)/2]

else C[hJ] := C[h+lJ/2] + B[hJ-l].
for all l<;</z pardo C[OJ] := C[0J] + B[OJ].

C[OJ], l<y<«, hold the desired prefix sums. This algorithm can also be
implemented to run in 0{n/p + log n) time using p processors on an EREW
PRAM. (Apply Brent's theorem and Implementation Remark 1.)

A wishful thought. We want to find an algorithm for the hst ranking problem
that performs a total of 0(n) short-cuts. If we could "plant" a balanced
binary tree in our Unked hst (in the order of the linked list) it would solve

Page 10



our problem: enter a one at each leaf and apply the prefix sum algorithm. A
closer look at the summation part of such a prefix sum computation reveals

the following:

The operation of the for statement (of the summation algorithm) for

/z = l corresponds to short-cuts at every odd location in the Unked list.

This results in a new linked list that connects only the even locations

of the original list, thereby halving its length. Then, the for statement

for /z = 2 corresponds to short-cuts at odd locations of the new linked

list, and so on. See Fig. 4. Observe that the for statement of the

summation algorithm never performs a short-cut at two successive

elements of the linked list at hand; and, therefore, the "input" to any

operation of this for statement is a single linked list.

Remark: The problem, of course, is that we do not know how to plant a

balanced binary tree with respect to the linked list without actually first

solving the list ranking problem itself, since this "planting" needs the ranking

mod 2, mod 4, mod 8,... as explained above.

Each operation of the for statement has the following two features.

(1) The output is a single list whose length is half the length of the

input.

(2) It takes (9(1) parallel time to execute.

We will use an algorithm wliich approximates these two features. In our new
algorithm we plant an "approximately balanced tree" (it will be a 2-3 tree).

Each leaf of the tree corresponds to an element of the list, and each level of

the tree corresponds to an iteration of the for statement. For a given level of

the tree, the nodes at this level correspond to those elements of the list over
which shortcuts have not yet been made (by iterations of the for statement

corresponding to lower levels of the tree). For each level of the tree we
divide the elements of the list (corresponding to nodes at this level) into two
sets: those that are shortcut (by the corresponding iteration of the for

statement), called victims, and those that are not shortcut (called survivors).

In order to approximately achieve properties (1) and (2) above, we require

these two sets to meet the following two constraints:

(a) If an element is a survivor then its successor (if any) is a victim.

(b) One, at least, of every three adjacent elements is a survivor.

By (a) at most one half of the elements are survivors. By (b) each survivor

need perform at most two shortcut operations to remove all the victims from
the hst. Hence in 0(1) parallel time (using n processors) we obtain a single

linked list containing at most half as many elements (assuming we can
separate the elements into survivors and victims)

.

But a 2-ruling set provides an appropriate set of survivors!

Page 11



4. The basic list ranking algorithm

Initialization: m := n. As in the standard deterministic a]gorithm, denote

the pointer of element i by D(/) and initialize /?(/) :=l,0</<n — 1.

The algorithm which is given later should be read together with the

commentary below. The purpose of the while loop of the algorithm is to

"thin out" the input linked list into a list of length < /i/log n. The input to

each iteration of the while loop is a linked list of length m stored in an array

of length m. Vector D contains, for each element, the next element in this

linked list.

The purpose of Step 2 is to enter either the value 1 or the value into

RULING (J), for each j, O^y^m — 1, so that those elements with

RULING(J) = 1, 1 ^ 7 :^ m, form a 2-ruling set of the directed graph. Step

2 uses essentially the algorithm of Section 2 for finding a 2-ruling set.

In Step 3 we shortcut, in parallel, over eachy such that RULING (J)
= 0. The

resulting list will contain exactly those elements in the 2-ruling set, of which
there are at most m/2. We make some further comments on the operation of

this step.

(a) Each element j for which RULING (J)=1 (an element of the 2-niling

set) is followed by at least one and at most two elements for which
RULING is 0.

(b) Each element over which we perform a shortcut will remain with no
incoming pointers. Such elements will be "deleted" in Step 4.

(c) The parameter t stands for the present time. The information in

OP(i,t) enables us, later on, to reconstruct the operation of processor i at

time t. This is used in Step 6 to derive the final value of R(D(J)) by
subtracting the present value of R(J) from the final value of R(j). For
this reason we preferred here to name the processors performing the

operations rather than to use the framework of Brent's theorem.
Step 4 contracts the input array for the present while loop iteration into a
new array that contains exactly those elements Ln the new linked list.

When we arrive at Step 5, the length of the linked list at hand is <n/log n.

Step 5 apphes the standard hst ranking algorithm in order to find the ranking
of each element in this linked list.

Step 6 extends the Hst rankings to all elements of the original linked list using
the information in OP (.,.).

while m > nAog n do
Step 1. (Initialization for the present while loop iteration).

fory, < J < m — 1, pardo
seriaLqU) := ;•

step 2. Compute a 2-ruling set into vector RULING.
From now on we specify for each instruction the processors that perform
it. Suppose p processors are available. Processor z, 1 < f < p, is assigned
to segment [{i-l)m/p, . . . ,im/p - 1] of the array that forms the input to

Page 12



this whileloop iteration. (For simplicity we assume that m/p is an integer.

Otherwise, we could assign Processor i to the segment including all the

integers in the half open interval {{i-l)m/p -1; im/p -1]. )

Step 3.

for Processor f , 1 < / < p ,
pardo

for y := (z — l)m/p to im/p — 1 do

if RULING 0) = 1

then OPii,t) := {D(J)JM)y,
R(J) = RU) + RiD(J)) ; D(J) := DiDQ)) (shortcut).

if RULING {D (J))
=

then (9P(f,0 := iD(j)J J^U));
R(J) := ^0') + RiDij)) ; D(J) := D(D(J)) (shortcut).

Step 4.Perform the Ijalanced binary tree prefix-sum computation described

in the previous section with respect to the vector RULING. As a result:

(1) m := 2^ RUUNGiJ), and

(2) each element j with RULING (J)
= 1 gets its entry number in a

- (contracted) array of length m containing the output linked list.

(This array is the input for the next iteration (if any) of the whileloop.)

od

Let Ti (resp. T2) be the first (resp. last) time unit for which an assignment

into 0P(
, ) was performed.

Step 5.Apply a simulation of the standard deterministic algorithm by p
processors to the current an'ay.

Step 6.

forProcessor /,!</</?, pardo
for t := T2 downto T-^ do

R{OP{i,t).l) := R{0P{i,t).2) - 0P{i,t).3 .

(Comment. OP (i,t).k, k= 1,2,3, represent the fields of

OP{i,t). Also, recall Comment (c) in the verbal description

of Steps.)

Implementation remark. Each time m gets a new value, broadcast it to all

processors as in Implementation Remark 1 of the previous section.

Complexity
Initialization requires 0{n) operations and 0(1) time. Let us focus on one
iteration of the while loop.

Step 1 takes 0{m) operations and 0(1) time.

Step 2 takes 0{m\og'm) operations and 0(log*m) time.

Step 3 takes 0{m) operations and 0(1) time.

Step 4 takes 0{m) operations and 0(log m) time.

So each iteration of the while loop takes 0(mlog*m) operations and 0(log m)
time. Each such iteration results in a linked list whose length is < 1/2 the

Page 13



length of the list when the iteration started. Therefore, after OQoglog n)

iterations we get a list whose length is < n/log n. Summing up the operation

and time complexity of the while loop gives 0{n\og'n) operations and

C>(log nloglog n) time.

Step 5 takes 0{n) operations and (9(log n) time.

Step 6 requires the same number of operations and time as all the iterations

of Step 3, since it follows its "footsteps".

So we got a total of Oinlog'n) operations and 0(log nloglog n) time.

Applying Brent's theorem we get 0{{n\og'n)/p) time using any number

p < {nlog'n)/{\og nloglog n) of processors. We know that any such result

can be alternatively stated as 0(log n loglog n) time using

(nlog*n)/(log nloglog n) processors. We leave the reader to verify that the

implementation problems as per the remark following Brent's theorem can be

readily overcome.

5. The Optimal Algorithm

We describe an algorithm that runs in time

0{nk/p + log'^^^nlogn + k\ogn) using any number p of processors, for

/tr^log'n (henceforth, we assume /:<log'n). We deduce the following

results.

(1) For fixed k, with p = n/(loenlog(*)n) we achieve a running time

of C>(/:lognlog(*^n) = C>(lognlog^*)n); this is optimal speed-up.

(2) For k = \og*n, with p = n/logn, we achieve a running time of

C>(lognlog*n), since for ^ = log*n, log'^^^n < 2.

A variant of the algorithm will yield our third result.

The basic algorithm (of the previous section) had two stages. In the first

stage (the while loop) we employed an almost optimal algorithm (given a list

of length m it performed C>(mlog''m) operations). In the second stage (step

5) we used an algorithm that performed relatively more operations (for a list

of length m, O(mlogm) operations), but it had the advantage of being faster.

To profit from this we needed to ensure that the numbers of operations

performed by the two stages were roughly the same. And, in fact, this was
the case, because the list processed in the second stage was sufficiently

shorter. Our present algorithm pushes this methodology further. The
algorithm has three main stages, each one processing a relatively shorter list.

Stage 1 uses an optimal algorithm that is relatively slow; its effect is to

sligthly reduce the length of the input hst. Stage 2 uses an almost optimal

algorithm; it is faster. Its effect is to further reduce the length of the list.

Stage 3 uses the standard deterministic algorithm. It misses optimality by a

logarithmic factor, but it the fastest of the three algorithms. The overall

result is a fast optimal algorithm. This methodology was also used in [Vi-

83b].

Page 14



The input for Stage 1 is the input linked list of length n. The output of

stage 1 (and input for Stage 2) is a linked list of length < n/(log(*'^^)n)^ The
output of Stage 2 (input for Stage 3) is a linked list of length < n/(log n)^.

Each of the linked lists mentioned above is given in an array whose size is the

same as the length of the hst. Stage 3 simply consists of applying the standard

deterministic parallel algorithm.

Remarks. The algorithm will be described in less detail than the preceding

algorithms. In particular:

1. At each timestep of stages 1 and 2 we have a linked list that was obtained

from the input list by propagating pointers over vertices that were omitted

(as in the previous section). In particular, every edge, in any of the Hnked
Lists that are obtained throughout these stages, corresponds to a directed path

in the original input list. We must maintain a vector (Uke R in the previous

section) that holds, for each such edge, the length of its original path.

However, in this presentation we focus only on the transitions from a given

linked list to a shorter one and avoid mentioning updates of this vector.

2. Note that in (stages 1 and 2) we only mentioned contractions of a linked

list into a shorter one (the up-sweep part using the term of Section 3). We
will systematically omit the corresponding down-sweep part throughout this

section. No new ideas (beyond Section 4) are required in order to fill in this

part.

Stage 1. This stage employs Procedure 1 repeatedly.

Procedure 1.

Input: A linked list of length m given in an array of length m

.

Output: A linked list of length < m/2 given in an array of the same length as

the list.

Procedure 1 proceeds as follows.

1. Apply the basic step (of Section 2) k+1 times to obtain a log"^*"^^)/?: -ruling

set. (Denote the cardinality of this ruling set by m^).

Erplanation. The output list of Procedure 1 will consist of the vertices of

the ruling set. So for each vertex v in the ruling set the remaining job for

Procedure 1 is to traverse the input Hst up to the first successor that is also in

the ruling set (to be called the sublist of v). (Recall that the edge length of

each such sublist is between 2 and log^*''"^)^ -H 1.) This remaining job might
cause difficulties if we used a naive assignment of processors to their jobs as

per the remark following Brent's theorem (particularly if optimal speed-up is

desired). Below, we show how to overcome these difficulties.

2. Using the prefix simi algorithm assign numbers from 1 to mi to the

vertices of the ruling set. (Each vertex represents its subhst, which is

thereby imphcitly numbered.)

Conceptually, in stages 3 and 4 below, we partition the work of traversing

the mi sublists among m/(log mlog(*"^-^)m) processors. We have two phases.

Page 15



3. Phase 1 consists of time pulses. At each time pulse each processor is "in

charge" of log m sublists. For each of its sublists the processor advances

down one edge; if an element of the ruling set is not encountered (meaning

that the traversal of the sublist is not yet completed) then the processor

remains in charge of the sublist. At the end of each pulse each processor

needs to acquire a few new sublists in order to restore its number of sublists

to log m. The situation is as follows:

(1) Each sublist, up to sublist q, for some q<mi, has been previously

assigned to a processor.

(2) Processor /, 0</<m/(logmlog'^*'^^)m), needs a,- additional sublists

to restore its number of sublists to logm

.

In parallel, the processors perform a prefix sum computation on a,- (in time

C>(logm)). Let Z?,- = ^ay, for 0</<m/(logmlog(*'^^)m). Processor i

acquires a,- new sublists by taking the sublists ^ + ^,_i + 1 through q + bi.

(This makes sense only as long as we refer to indices ^m^.) If
m/(logmlog(*^^'m)

2 aj ^ nil then all the sublists have been assigned to processors

and we proceed to phase 2. Otherwise, another pulse of Phase 1 is

performed. (This application of a prefix sum computation is very similar to

the (known) use of the primitive Fetch-and-Add by the NYU-Ultracomputer
for the parallel implementation of a queue (see [GLR-83]).)

4. Phase 2. The situation is that each of the m/(log mlog^^'^^^m) processors is

in charge of at most log m sublists, where the length of each sublist is

< log^*"^^)/?!. Each processor simply completes the traversal for all its

sublists.

5. A prefix sum computation is applied in order to contract the input array

into an array of size m^ containing only the vertices of the output linked list.

Time complexity of Stage 1.

Complexity of an iteration of Procedure 1.

Step 1: 0{k) time, 0{mk) operations.

Each of steps 2 and 5: 0(log m) time, 0{m) operations.

Step 3: Recall that we use m/(log mlog^*"^^^m) processors. In each pulse each
processor needs C>(log m) time to traverse one edge in each of its sublists. An
additional 0(\og m) time is needed for the prefix sum computation. Since

each pulse provides for traversals of m/log(*'''-^)m edges there will be at most
log(*+i)m pulses before the queue is empty and we proceed to Step 4. So
Step 3 takes 0(log mlog*^*"^^)/?!) time and 0{m) operations.

Step 4: 0(log mlog^^'^^^m) time using 0{m) operations.

So an iteration of Procedure 1 takes 0(logmlog(*'^^)m) time and 0{mk)
operations.

Page 16



Complexity of Stage 1. The output of Stage 1 is a linked list whose length is

< n/{\og^^'^^^ny. Since at each invocation of Procedure 1, mi :S m/2, we
need to use at most Slog*^*"^^)/! iterations of Procedure 1. So the total number

of operations in Stage 1 is 0(nk + nk/2 + nk/4 + ...) = 0{nk) and the total

time is 0(log nlog^^ + ^^nlog^*^^)^) < q^Iq^ /zlog(*)/i).

Stage 2. Stage 2 consists of k iterations of Procedure 2.

Iteration i of Procedure 2, (1 < i < k),

Letj = k+l-i.
Input. A linked list of length at most /i/Qog*^"^^)?!)^, given in an array having

the same length as the list.

Output. A linked list of length at most n/{\og^^ny, given in an array having

the same length as the list.

1. Apply 3\og^^'^^n - 3\og^'^'^^n iterations of Routine 1.

Iteration g of Routine 1, < g < 3\og^-^^'>n - 3\og^^^^n.

Input. A hnked list of length m < 2~^n/{\og^^'^^ny, given in an array of

length < n/(log*^'^^)n)^. (The vertices of the linked list are "spread over" the

array which may have more entries than the length of the Hst. Redundant
entries of the array (i.e., entries that represent vertices which are not in the

input list for iteration g) are marked as such. The reason for this "wasteful"

representation of the input is that iterations of Routine 1 "save time" by not

contracting their input aiTay to include only their output list. Only the end of

Procedure 2 contracts the lijiked list at hand)

.

Output. A linked of length mi < m/2, given in an array of length

< n/(log<^ + i)n)^

(a) Apply the basic step (of Section 2) j+1 times to obtain a log'^'^^^n-ruling

set. (Denote the cardinality of this ruling set by mi).

Explanation. The output list of the present iteration of Routine 1 will

consist of the vertices of the ruling set. So for each vertex v in the ruling set

the remaining job is to traverse the sublist of v . (Recall that the edge length

of each such subhst is between 2 and log^'^^^n + 1.)

(b) for 1 < V < n/(log<^'+i)n)3 pardo
if V ^ the ruling set

then traverse the sublist of v

.

This completes iteration g of Routine 1.

Step 2 below concludes the present iteration of Procedure 2.

2. A prefix sum computation is applied in order to contract the input array

into an array containing only the vertices of the linked list at hand.

Time complexity of Stage 2.

Complexity of iteration g of Routine 1: Using n/{\og^'^^^ny) processors,

Step (a) takes 0(J) time and Step (b) takes 0{]og^^'^^n) time. This yields a

bound of 0(nj/{\og^^'^'>n)~) operations taking C(Iog'^'^^);i + j) time.

Complexity of iteration / of Procedure 2: Step 1 consists of C>(log*^"^^)/i)

Page 17



invocations of Routine 1. Step 2 needs C>(n/(log^"^^)n)^) operations and

C>(log n) time. Thus the i-th iteration of Procedure 2 performs

0(Jn/\og^^^^n) operations in time

C((log^^i)n + j)-\og^^^^n + logn) = O(logn).

So, overall, Stage 2 performs C>(y -

—

/.^ )
< 0(kn) operations in time

_,' = ilog^^^-'n

C>(^'logn).

Stage 3 requires C>(log n) time and 0{n/\og^n) operations. It is also easy

to bound the time and number of operations required by the down-sweep

part (which is missing in the above description) by the same time and number

of operations as for stages 1 and 2.

Putting everything together, and applying Brent's theorem, we deduce

the algorithm runs in time 0(nk/p + log*^)nlogn + ^logn), using any

number p of processors, where k:^\og'n. The implementation problems as

per the remark following Brent's theorem can be readily overcome.

Remark: We can also obtain a class of algorithms taking time 0(\ogn) on

/ilog(*)/i/logn processors, for any fixed positive integer k, as follows. By way
of motivation, we observe that, in the algorithm just described, stage 2 is

faster than stage 1 (on equal length inputs), but requires more operations.

Therefore, by substituting stage 2 for stage 1, we might expect to reduce the

running time and increase the total number of operations. So, in the above

algorithm, we replace Stage 1 with Routine 1 applied Slog^^'^'^^n times, where
the input for the g-th iteration is a linked list of length <2~'?n, stored in an

array of length n; also, in part (a) of the routine, we seek a log (*"^^)/i -ruling

set. Then we perform the rest of the above algorithm with no change. We
achieve a running time of 0(k\ogn) taking

0(nlog(*'^^)nlog(*^"^-)/z -I- kn) < 0(n\og^^^n) operations. Our result follows

by Brent's theorem. This shows that Wyllie's conjecture which was
mentioned in the introduction is not correct.

6. Open problems

(1) Is there an optimal speed-up algorithm for the list ranking problem using

n/\ogn processors and running in time 0(log/2)?

(2) We recall that the new coin tossing technique distinguishes the PRAM
model from the more abstract PRAM-INFINITY model. We are not aware
of any other technique having this property. Are there others? In addition,

this remark calls for a "metatheoretical" discussion of the applicability of

PRAM-INFINITY lower bounds to PRAMs. We note that a lower bound in

the PRAM-INFINri'Y model is stronger than the same lower bound in the

decision tree model, a model that is often used when proving lower bounds.
Also, non-trivial lower bounds have been proved for the PRAM-INFINITY
model. Thus it seems useful to ascertain the applicability and limitations of

such lower bounds.

Page 18



Acknowledgement Much gratitude to Baruch Schieber for helpful discussions

and comments and to Dennis Shasha for useful comments on an earlier draft.

7. References

[AHU-74] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and

Analysis of Computer Algorithms, Addison-Wesley, Reading,

MA, 1974.

[CLC-81] F.Y. Chin, J. Lam and I. Chen, "Optimal parallel algorithms for

the connected component problems," Proc. 1981 International

Conf. on Parallel Processing (1981), 170-175.

[FMRW-85] F.E. Fich, F. Meyer auf der Heide, P. Ragde and A.

Wigderson, "One ,two, three... infinity: lower bound for parallel

computation", Proc. 17th Annual ACM Symp. on Theory of

Computing (1985), 48-58.

[GLR-83] A. Gottlieb, B.D. Lubachevsky and L. Rudolph, "Basic

techniques for the efficient coordination of very large numbers
of cooperating sequential processors", ACM TOPLAS, 1983,

164-189.

[IM-85] A. Israeli and S. Moran, private communication.

[KRS-85] C.P. Kruskal, L. Rudolph and M. Snir, "The power of parallel

prefix", Proc. 1985 International Conf. on Parallel Processing,

180-185.

[MW-85] F. Meyer auf der Heide and A. Wigderson, "The complexity of

parallel sorting", Proc. 26th IEEE Annual Conf. on Foundations of

Computer Science (1985), to appear.

[TV-83] R.E. Tarjan and U. Vishkin, "An efficient parallel

biconnectivity algorithm", TR 69, Dept. of Computer Science,

Courant Institute, NYU, 1983. To appear in SIAM J. Comput.

[\^-83a] U. Vishkin, "Synchronous parallel computation - a survey", TR
71, Dept. of Computer science, Courant Institute, NYU, 1983.

[Vi-83b] U. Vishkin, "An optimal parallel algorithm for selection",

manuscript, 1983.

[Vi-84a] U. Vishkin, "An optimal parallel connectivity algorithm",

Discrete Applied Math. 9 (1984), 197-207.

[Vi-84b] U. Vishkin, "Randomized speed-ups in parallel computation",

Proc. 16th Annual ACM Symp. on Theory of Computing (1984),

230-239.

[Vi-85] U. Vishkin, "On efficient parallel strong orientation", 1984,

Information Processing Letters 20 (1985), 235-240.

Page 19



[W-79] J.C. Wyllie, "The complexity of parallel computation," TR 79-

387, riepartment of Computer Science, Cornell University,

Ithaca, New York, 1979.

Page 20



This book may be kept

FOURTEEN DAYS
A 6ne will be charRcd for each day the book is kept overtiine.



NYU COMPSCI TR-17 5 Cl
Vishkin, Uzi
Deterministic coin tossing
with applications to

optimal parallel list

NYU COnPSCI TR-17 5 CI
Vishkin, Uzi
Deterministic coin tossing
with applications to

optimal parallel list

LIBRARY
N.Y.U. Courant Institute of

Mathematical Sciences

251 Mercer St.

New York, N. Y. 10012




